Кафедра биофизики

  • Increase font size
  • Default font size
  • Decrease font size
Главная страница Новости науки Journal of Photochemistry and Photobiology B: Biology
Новости науки
ScienceDirect Publication: Journal of Photochemistry and Photobiology B: Biology
ScienceDirect RSS

  • Direct sunlight enabled photo-biochemical synthesis of silver nanoparticles and their Bactericidal Efficacy: Photon energy as key for size and distribution control

    Publication date: November 2018

    Source: Journal of Photochemistry and Photobiology B: Biology, Volume 188

    Author(s): Abhishek Kumar Bhardwaj, Abhishek Shukla, Shweta Maurya, Subhash Chandra Singh, Kailash N. Uttam, Shanthy Sundaram, Mohan P. Singh, Ram Gopal

    Abstract

    It is highly desirable to discover novel green synthesis methods for cheap and scalable synthesis of nanoparticles (NPs) to reduce the negative impact on the environment. But these approaches generally impose great challenge in controlling size, shape, and homogeneity of product NPs. Here in the present study, we report a novel approach enabling direct sunlight and oyster mushroom (Pleurotus citrinopileatus) extract for the photo-biochemical synthesis of Ag NPs. Sunlight of different wavelength was used to control the size and distribution of photo-biochemically produced NPs. Interestingly, it is observed that a smaller wavelength of sunlight produces smaller sized of NPs with a narrow size distribution. For examples; blue sunlight produces colloidal silver NPs with an average diameter of ~ 3.28 nm and 0.72 nm size distribution, while full sunlight produces comparatively larger sized (7.08 nm) NPs with wider (2.92 nm) size distribution. Since present approach uses only direct sunlight, freely available renewable energy source, a cheap biological extract as reducing and capping agent and cheap silver precursor, therefore it is an environment-friendly approach and can be used for the synthesis of NPs at industrial scale. Moreover, the size-dependent bactericidal effect has also been studied against pathogenic, Escherichia coli, bacteria. The minimum inhibitory concentration (MIC) 25 ppm and MBC 30 ppm have been observed for silver NPs of 3.28 nm average diameter.

    Graphical abstract

    Unlabelled Image



  • Phototoxicity of flavoprotein miniSOG induced by bioluminescence resonance energy transfer in genetically encoded system NanoLuc-miniSOG is comparable with its LED-excited phototoxicity

    Publication date: November 2018

    Source: Journal of Photochemistry and Photobiology B: Biology, Volume 188

    Author(s): G.M. Proshkina, E.I. Shramova, O.N. Shilova, A.V. Ryabova, S.M. Deyev

    Abstract

    Photodynamic therapy (PDT) is a clinical, minimally invasive method for destroying cancer cells in the presence of a photosensitizer, oxygen, and a light source. The main obstacle for the PDT treatment of deep tumors is a strong reduction of the excitation light intensity as a result of its refraction, reflection, and absorption by biological tissues. Internal light sources based on bioluminescence resonance energy transfer can be a solution of this problem. Here we show that luciferase NanoLuc being expressed as a fusion protein with phototoxic flavoprotein miniSOG in cancer cells in the presence of furimazine (highly specific NanoLuc substrate) induces a photodynamic effect of miniSOG comparable with its LED-excited (Light Emitting Diode) phototoxicity. Luminescence systems based on furimazine and hybrid protein NanoLuc-miniSOG targeted to mitochondria or cellular membranes possess the similar energy transfer efficiencies and similar BRET-induced cytotoxic effects on cancer cells, though the mechanisms of BRET-induced cell death are different. As the main components of the proposed system for BRET-mediated PDT are genetically encoded (luciferase and phototoxic protein), this system can potentially be delivered to any site in the organism and thus may be considered as a promising approach for simultaneous delivery of light source and photosensitizer in deep-lying tumors and metastasis anywhere in the body.

    Graphical abstract

    Unlabelled Image



  • Synthesis of mycosporine-like amino acids by a size-fractionated marine phytoplankton community of the arctic beaufort sea

    Publication date: November 2018

    Source: Journal of Photochemistry and Photobiology B: Biology, Volume 188

    Author(s): Sun-Yong Ha, Jun-Oh Min, HyoungMin Joo, Min-Seob Kim, Sung-Ho Kang, Kyung-Hoon Shin

    Abstract

    During the RV-ARAON cruise, a comparative study on the biosynthesis of mycosporine-like amino acids (MAAs) was conducted for the size-fractionated phytoplankton of the Beaufort Sea (Arctic). The MAAs contents in the micro-phytoplankton community (>20 μm size) is considerably higher than that observed in the nano- (20–2 μm size) and pico-phytoplankton (<2 μm size) communities. The micro-phytoplankton of the Mackenzie Shelf had a relatively higher Chlorophyll a (Chl a) concentration. Considering the total phytoplankton community, the MAAs concentration as well as net production of individual MAAs (such as shinorine and palythine) were higher at the Mackenzie Shelf rather than at the sites located beyond the Beaufort Sea; precisely, the highest net production rates of shinorine and palythine were 0.211 (±0.02) ng C L−1 d−1 and 0.136 (±0.001) ng C L−1 d−1 respectively (No other MAAs were detected). The micro-phytoplankton used around 0.5% of the total carbon uptake for the synthesis of MAAs. Compared to the smaller phytoplankton community, the micro-phytoplankton utilized more of their energy for the biosynthesis of MAAs; on the other hand, nano- and pico-phytoplankton focused on cellular activity and had poor biosynthesis of MAAs. This clearly indicates the phytoplankton size-dependent variation in the biosynthesis of MAA in the natural phytoplankton community. This study revealed the environmental adaptation of the various sizes of phytoplankton community as well as their physiological response in the Arctic Beaufort Sea.



  • Influence of wideband visible light with an padding red component on the functional state of mice embryos and embryonic stem cells

    Publication date: November 2018

    Source: Journal of Photochemistry and Photobiology B: Biology, Volume 188

    Author(s): A.S. Chernov, D.A. Reshetnikov, A. Kovalitskaya Yu., A.A. Manokhin, S.V. Gudkov

    Abstract

    It is known that visible light, including sunlight and laboratory lighting, adversely affect the development of embryos in vitro. In with article we present a technology for the synthesis of composite screens, capable to photoconvert UV and a part of the blue spectrum into red light with the maximum ~630 nm. It is established that the application of such transformed light with an evident red component raises the chances of embryos to survive and protects embryonic stem cells. To create photoconversion screens, the CdZn/Se quantum dots were obtained, the average size being about 7 nm. When the quantum dots are excited by electromagnetic waves of the UV and blue spectral range, photoluminescence is observed. The average photon energy for photoluminescence is of the order of 2 eV. On the basis of CdZn/Se quantum dots and methylphenylsiloxane polymer, light-transforming composite screens were made. In case of the light-transforming composite screen, the UV component disappeared from the energy spectrum, and the intensity of the blue region of the spectrum was reduced. On the contrary, in the red region (λmax = 630 nm) one can see a little more than two-fold increase of intensity. It is shown that when exposed to 2-cell embryos by transformed light, the proportion of normally developing embryos increases by 20%, the number of dead embryos decreases twice, and number of dead and apoptotic cells was lower in blastocysts, what's decreased by 70%, as compared to the control group. When blastocysts are transferred to the feeder substrate, colonies of embryonic stem cells are formed. Cells obtained from blastocysts irradiated with transformed visible light are in a normal state in 90% of cases and did not change expression levels, biochemistry and morphology for at least 20 passages. It is assumed that the data obtained can be used for the design of systems of efficient cultivation of embryonic cells for tissue engineering and cell therapy.

    Graphical abstract

    Unlabelled Image



  • Anthocyanic pigments from elicited in vitro grown shoot cultures of Vaccinium corymbosum L., cv. Brigitta Blue, as photosensitizer in natural dye-sensitized solar cells (NDSSC)

    Publication date: November 2018

    Source: Journal of Photochemistry and Photobiology B: Biology, Volume 188

    Author(s): Simona Lucioli, Chiara Di Bari, Cinzia Forni, Aldo Di Carlo, Enrique Barrajón-Catalán, Vicente Micol, Paolo Nota, Federico Teoli, Fabio Matteocci, Andrea Frattarelli, Emilia Caboni

    Abstract

    We investigated the effect on anthocyanins and total phenols content and antioxidant capacity of in vitro shoot cultures of Vaccinium corymbosum L., cv. Brigitta Blue, grown on an eliciting medium supplied with 10 μM naphthalene acetic acid, in combination with reduced content of salts and organics in respect to the basal medium. After 45 days, higher content of total phenols and anthocyanins was obtained from extracts of shoots grown on the elicitation medium. Anthocyanin molecules, absent in control shoots, were identified by HPLC-MS as delphinidine-glycoside, cyanidine-glycoside, delphinidine-arabinoside, cyanidine- arabinoside and cyanidine-acetylglycoside. Chlorogenic acid, present in control shoots, was nearly absent in elicited shoots.

    We exploited the anthocyanin - based raw extracts of “Brigitta Blue” shoots grown on the elicitation medium as a source of natural dye photosensitizers for Dye Sensitized Solar Cells, taking into account that such raw extracts showed antioxidant properties and photostability features. A purified dye was also prepared and the comparison of the latter with the raw one has been analysed by spectrophotometric, chromatographic and power conversion efficiency determination. The power conversion efficiencies from the raw and the purified dye were not different and they were comparable to the data obtained by other authors with anthocyanin-based dyes from in vivo grown plants.



  • Effect of red light and near infrared laser on the generation of reactive oxygen species in primary dermal fibroblasts

    Publication date: November 2018

    Source: Journal of Photochemistry and Photobiology B: Biology, Volume 188

    Author(s): Sajan George, Michael R. Hamblin, Heidi Abrahamse

    Abstract

    Irradiation with red light or near-infrared (NIR) lasers can bio-modulate cellular processes or revitalize injured tissues and therefore, widely been used for therapeutic interventions. Mechanistically, this cellular or biological process, referred as Photobiomodulation (PBM), is achieved by the generation of oxide free radicals in cells and tissues. This explorative study using red light (636 nm) and Near Infra-Red (NIR, 825 nm) laser at various irradiation exposures reckons the level of oxidative stress induced by these free radicals in human primary fibroblasts. Freshly isolated dermal fibroblasts were irradiated with red light and NIR at power densities of 74 and 104 mV/cm2, respectively and, at varying fluences ranging from 5 to 25 J/cm2. Cellular oxidative stress, measured by Reactive Oxygen Species (ROS) upon quantifying fluorescently labelled oxide free radicals in cells, detected considerable variations between the irradiation exposures of red light and NIR laser. The NIR laser demonstrated high levels of ROS at all fluences, except 10 J/cm2 indicating its ability in generating of two types of oxide radicals in dermal fibroblasts, often illustrated as biphasic response. Further, the responses of these cells to variable fluences of red light and NIR laser were measured to evaluate the immediate effect of PBM on cellular activity. The production of cellular energy coincides with the amount of oxidative stress, which was two-fold higher in cells irradiated with the NIR laser, as compared with the red light. This outcome indicates that the ROS production within biological systems are more dependent on the wavelength of the laser rather than its fluences. Further studies are required to avoid ‘overdosing of PBM’ and to analyse ROS qualitatively for making the best use of the red light and NIR laser in clinics.



  • Protective effect of Thai silk extracts on drug-induced phototoxicity in human epidermal A431 cells and a reconstructed human epidermis model

    Publication date: November 2018

    Source: Journal of Photochemistry and Photobiology B: Biology, Volume 188

    Author(s): Apiwan Rosena, Thongchai Koobkokkruad, Waleewan Eaknai, Phichaporn Bunwatcharaphansakun, Rawiwan Maniratanachote, Sasitorn Aueviriyavit

    Abstract

    Bombyx mori silk extracts, derived from the cocoon degumming process of draw and dye silk in the textile industry, are mainly composed of sericin protein. To add value to the Thai silk extracts, and hence the silk industry, a simple enrichment process was recently developed and the enriched silk extracts were then applied in nano-cosmeceutical products and nano-delivery systems. In this study, the protective effect of Thai silk extracts from three different strains of Bombyx mori on the drug-induced phototoxicity was evaluated in vitro using chlorpromazine (CPZ), a commonly used antipsychotic drug, as a representative phototoxic drug. The human epidermal A431 cell line and reconstructed human epidermis (RhE) model were used as the in vitro skin model. The silk extracts significantly improved the viability of A431 cells after CPZ exposure and ultraviolet A (UVA) irradiation, as shown by the significantly increased CPZ and UVA IC50 values and the decreased proportion of apoptotic cells. The protective effect of these silk extracts against the CPZ-induced UVA-phototoxicity in A431 cells was associated with the attenuation of intracellular oxidative stress via an increased intracellular glutathione level. Likewise, the silk extracts exhibited a protective effect on the CPZ-induced UVA-phototoxicity in the RhE model, in terms of an improved tissue viability and attenuation of the released inflammatory cytokine, interleukin-1α. These findings support the potential usefulness of silk extracts in novel applications, especially in the protection of drug-induced phototoxicity.

    Graphical abstract

    Unlabelled Image



  • Methionine oxidation by hydrogen peroxide in peptides and proteins: A theoretical and Raman spectroscopy study

    Publication date: November 2018

    Source: Journal of Photochemistry and Photobiology B: Biology, Volume 188

    Author(s): Béatrice Sjöberg, Sarah Foley, Bruno Cardey, Michel Fromm, Mironel Enescu

    Abstract

    The oxidation of proteins results in their deterioration via the oxidation of reactive amino acids. Oxidation of the amino acid, methionine plays an important role during biological conditions of oxidative stress, and equally a role in protein stability. In this study the oxidation of the methionine residue using the tripeptide GlyMetGly with respect to hydrogen peroxide has been studied using both Raman spectroscopy and DFT calculations. Spectral modifications following the formation of methionine sulfoxide are shown with the appearance of the SO vibration whilst there is also the modification of the CS vibrations at approximately 700 cm−1. The changes in the intensity of the CS stretching band were used to calculate the kinetic rate constant as 7.9 ± 0.6 × 10−3 dm3 mol−1 s−1. The energy barrier for the reaction. is determined both experimentally and using DFT calculations. The reaction of the dairy protein beta-lactoglobulin with hydrogen peroxide is equally studied using the same technique. The solvent accessible surface area of the methionine residues within the protein were also determined and a comparison of the reaction rate constant and the energy barriers of reaction for the oxidation of the tripeptide and for the protein respectively thus, provides information about the role of the protein environment in the oxidation process.

    Graphical abstract

    Unlabelled Image



  • Photoactivated [Mn(CO)3Br(μ-bpcpd)]2 induces apoptosis in cancer cells via intrinsic pathway

    Publication date: November 2018

    Source: Journal of Photochemistry and Photobiology B: Biology, Volume 188

    Author(s): Vidhyapriya P., Divya D., Manimaran Bala, Sakthivel N.

    Abstract

    Carbon monoxide releasing molecules (CORMs) are organometallic/organic compounds that release carbon monoxide (CO) spontaneously or upon activation. PhotoCORMs are capable of releasing CO on light based activation. This group of molecules is used in photodynamic therapy due to their ability to release CO in a controlled manner. In the present investigation, the release of CO from [Mn(CO)3Br(μ-bpcpd)]2 (MnCORM) upon irradiation at λmax 365 nm was assessed spectrophotometrically using myoglobin assay and confirmed by liquid FT-IR spectroscopic analysis. Further, the cytotoxic potential of MnCORM on normal cells (HEK 293) and cancer cell lines such as lung (A549), cervical (HeLa), breast (MDA MB-231) and colon (HCT-15) was evaluated. The IC50 values of MnCORM were found to be 21.37 ± 1.72, 24.12 ± 1.03, 21.89 ± 0.59 and 13.69 ± 0.91 μM on cervical (HeLa), lung (A549), colon (HCT-15) and breast (MDA MB-231) cancer cells respectively. An inquest into the nature of cell death was confirmed based on the nuclear and cytological examinations, flow cytometric analyses and protein expression studies. The AO/EB dual staining and cytological evaluation of the treated cells revealed that the cell death might be due to apoptosis. The flow cytometric analysis of propidium iodide (PI) stained cells showed a significant amount of sub-G1 hypodiploid cells due to MnCORM treatment. The MnCORM-induced apoptosis was mediated through the generation of reactive oxygen species (ROS), specifically superoxide radicals leading to loss of mitochondrial membrane potential. The intrinsic pathway of apoptosis was elucidated based on the expression studies of pro-apoptotic and apoptotic proteins such as bcl-2, bax, cyt c, cleaved caspase-3, cleaved caspase-9 and cleaved PARP. Due to its innate potential to release CO upon photoactivation and its ability to induce apoptosis via intrinsic pathway, the MnCORM molecule could be exploited for controlled release and photodynamic cancer therapy.

    Graphical Abstract

    Unlabelled Image



  • Cadmium selenide quantum dot-zinc oxide composite: Synthesis, characterization, dye removal ability with UV irradiation, and antibacterial activity as a safe and high-performance photocatalyst

    Publication date: November 2018

    Source: Journal of Photochemistry and Photobiology B: Biology, Volume 188

    Author(s): Niyaz Mohammad Mahmoodi, Behzad Karimi, Mahmoud Mazarji, Hassan Moghtaderi

    Abstract

    In this paper, cadmium selenide quantum dot (CdSe QD)-zinc oxide (ZnO) nanocomposite (CdSe QD-ZnO) was synthesized and characterized and its photocatalytic dye degradation ability was investigated. The XRD, FTIR, UV–Vis, AFM and SEM were used to characterize the synthesized nanomaterials. The correlation coefficient of pseudo-first-order kinetic reaction is 0.98. The rate constants from 20 to 30 mg/L of pollutant concentrations was reduced by the order of 0.9. The temporal change in dye concentration reduces as the photocatalyst dosage increase up to optimum value of 0.04 g/L, then beyond that value the increase in the dosage becomes detrimental. Antibacterial activity of the synthesized nanocomposite as a safe photocatalyst was studied in details. Antibacterial activity of as prepared samples was also examined against Escherichia coli (E. coli). For in vitro study, Human umbilical vein endothelial cells (HUVEC) was utilized for the modeling of toxicity of each as prepared samples as representative of human normal cell line. In vivo study was conducted using leeches (Hirudo orientalis). In the presence of ethanol as hydroxyl radical (OH) scavenger, the removal efficiency significantly depresses compared to the di methyl sulfoxide as electron scavengers suggesting OH possesses a major role in photocatalytic dye (Basic Red 18: BR18) decolorization. By coupling with CdSe QD, the zone of inhibition was greatly increased suggesting the size dependent inactivation of E. coli. The results presented that the composite had no significant effect on the proliferation of HUVEC normal cells. In addition, the treatment of cells with ZnO and the composite does not impact on the cell morphology.

    Graphical Abstract

    Unlabelled Image



Научная работа